Wapmild: hacked
Tampilkan postingan dengan label hacked. Tampilkan semua postingan
Tampilkan postingan dengan label hacked. Tampilkan semua postingan

Selasa, April 07, 2020

Hack Computer Via IP - ilmu hacker Untuk Menerobos Internet

oke gaest, disini kita akan belajar memahami IP... Alamat IP ( Internet Protocol) Anda adalah ID unik Anda di internet. Ini identik dengan alamat rumah Anda. Siapa pun di dunia dapat menghubungi komputer Anda melalui alamat IP-nya, dan mengirim informasi untuk mendapatkannya kembali.
Saya yakin pada satu waktu atau lain Anda pernah mendengar bahwa hacker bisa hack komputer Anda melalui alamat IP Anda. Inilah salah satu alasan mengapa proxy dan anonimitas ada, untuk melindungi orang dari mempelajari alamat IP Anda. Jadi bagaimana hacker menggunakan hanya sebuah alamat untuk masuk ke komputer Anda dan membuat hidup Anda menjadi neraka?

Buka port Komputer Anda menjalankan layanan seperti media sharing pada apa yang disebut port. Port hanyalah sebuah pembuka yang digunakan sebuah layanan sebagai titik akhir komunikasi. Ada 65.535 total port yang dialokasikan di TCP / UDP.
Untuk memanfaatkan layanan di port, peretas memasang banner untuk perangkat lunak dan versinya. Setelah mereka mengetahui informasi itu, mereka akan mencari situs seperti Packet Storm karena eksploitasi yang diketahui bertentangan dengan layanan.
ip to hack
yups gaest hari ini saya author wapmild akan menunjukkan “pemindaian port” sederhana pada komputer lokal menggunakan Nmap, dan mengajarkan bagaimana seorang hacker akan memanfaatkan layanan ini, dan juga bagaimana mencegah diri dari hal itu. Ini akan dilakukan di Linux, tapi Nmap tersedia untuk semua platform.

Jika Anda tidak tahu cara menginstalnya di Windows dengan installer GUI (yeah, right), ikuti menggunakan Cygwin .

Langkah 1 Download & Install Nmap di cari saja di google search banyak ...yups Kata tebal adalah perintah yang harus dimasukkan di terminal emulator.

Pertama, kita harus mendownload Nmap, yang akan menjadi alat yang kita gunakan untuk pemindaian port dan pengumpulan informasi:

wget http://nmap.org/dist/nmap-5.51.tar.bz2

Sekarang, ekstrak arsipnya:

tar-zxvf nmap-5.51.tar.bz2

Ubah ke direktori yang baru dibuat:

cd < nama direktori > Ini adalah prosedur instalasi standar: ./configure make && sudo make install Nmap sekarang harus diinstal!

Langkah 2 Pindai Target Mari kita scan komputer lokal.

Saya akan menggunakan situs web sebagai contoh, bukan komputer lokal. Ini karena firewall saya benar- benar gila, dan menyaring pemindaian. Jangan memindai komputer jarak jauh dengan maksud melakukan perbuatan buruk. Ini untuk tujuan pendidikan saja. Mulailah dengan memetakan jaringan lokal Anda:

sudo nmap-sP 192.168.1.0/24 Itu harus mengembalikan daftar host yang siap untuk port scan!

langkah 3 Pindai Target Individu Anda Dari daftar target yang telah datang, pilih salah satu yang ingin Anda pindai untuk layanan.
Mari kita melakukan pemindaian penuh semua port TCP / UDP:
sudo nmap-p 1-65535 -T4 -A -v < target IP goes here > Anda harus mendapatkan sesuatu yang terlihat seperti gambar berikut:
hack computer via ip
Seperti yang bisa Anda lihat, target ini memiliki banyak port terbuka. SSH menarik perhatian saya, jadi mari kita beralih ke perampokan banner untuk mempelajari versi perangkat lunak atau pilihan layanan kami.
Langkah 4 Banner Grabbing Untuk ini, Anda bisa menggunakan klien telnet biasa. Telnet hadir dengan Windows dan kebanyakan distro Linux:
telnet < host IP > < banner port untuk ambil > Dari sini, saya akan mempelajari versi perangkat lunak mana yang sedang dijalankan, lalu lihat apakah saya dapat menemukan cara untuk memanfaatkannya.
Demikian dan semoga paham tulisan ini.

Selasa, Januari 28, 2020

Cara Hack Wifi Di Android Sekaligus Memutuskan Jaringan Wifi Sipengguna Lain

Hallo si pengembara artikel untuk pengetahuan Bagaimana Kabar Kalian ?, hehehee.. semoga sehat selalu dan banyak rejeki ya.. Amin dehhhh...

saya akan Memberi Pengetahuan Tentang hack wifi dengan menggunakan ponsel Android.

Sebelum Itu Kalian Harus Menggunakan Secara Bijak Karna Gangguan Di tanggu Sendiri
Tujuan Saya share trik ini adalah untuk keamanan pembaca. Jadi kalian bisa mencoba keamanan wifi kalian dengan aplikasi ini.

Jika masih bisa ditembus silahkan ganti password wifi Kamu lebuh rumit lagi, atau gunakan sistem keamanan lainnya.

Oke untuk pembahasan pada artikel Saya kali ini akan kita bagi menjadi 3 yaitu :

  1. Cara Hack Wifi dengan Android
  2. Cara memutuskan jaringan wifi pengguna lain dengan netcut
  3. Cara agar Kamu tidak terkena netcut


1. Cara Hack Wifi dengan Android Hack Wifi dengan ponsel Android sebenarnya sangat mudah. Namun untuk bisa menjalankan aplikasinya syarat utama Hp Kamu harus sudah diroot.

Jika belum tau apa itu root silahkan baca diartikel Saya sebelumnya Cara Mudah Root dan Penjelasan Root

Nah sekarang Saya anggap Hp Kamu sudah Root.

Untuk mengetahui Hp sudah root atau belum silahkan gunakan aplikasi ini Download  Root Checker

Baiklah sekarang mari kita mulai cara hack wifi dengan android :
1. Setelah dicek menggunakan aplikasi Root Checker dan Hp Kamu sudah dinyatakan Rooted, silahkan download Aplikasi ini sebagai alat Hack Wifi WpS Connectoribetsz
2. Pastikan wifi Kamu sudah menyala / aktif
3. Buka Aplikasi Wps Connectoribetsz, jika muncul pop-up biasanya perizinan dari Super User untuk menjalankan aplikasi tersebut. Klik ijinkan
4. Klik tombol scan diatas pojok sebelah kanan
5. Akan muncul username wifi disekitar Kamu
6. Pilih salah satu wifi yang ingin Kamu coba keamanannya / hack
7. Jika sudah berhasil akan muncul pop-up tentang informasiwifi beserta password nya
8. Copy passwordnya, lalu masuk ke pengaturan - wifi - pilih wifi - masukkan / paste passwordnya
9. Selamat Kamu sudah terhubung ke wifi



2. Cara Memutuskan Orang Di Jaringan Wifi Yang Sama Si Pengguna Lain Setelah Kamu terhubung ke jaringan wifi, biasanya kecepatan internet kurang maksimal karena banyaknya jumlah orang yang menggunakan wifi tersebut.

Untuk memaksimalkan kecepatan akses internet / wifi. Kamu bisa memutuskan jaringan pengguna lain / mengurangi kecepatan akses wifi pengguna lainnya.

Jika Kamu bukan pemilik wifi Saya tidak menyarankan menggunakan cara ini ya.

Sama-sama pengguna jadi jangan saling senggol. pisz saja gk usah shok pintar.

Yang harus dipersiapkan :
1. Hp Android Root
2. Aplikasi Netcut

Cara penggunaan :
1. Download Aplikasi Netcut disini Netcut nih
2. Buka Aplikasi Netcut dan berikan izin dari Superuser
3. Cari pengguna lain
4. Klik maka secara otomatis jaringan wifi akan terputus / kurangi kecepatan akses wifinya.
Lihat screenshot dibawah ini

cara hack wifi dengan android


Untuk mengetahui IP Kamu silahkan masuk ke Setelan - Pilih wifi yang terhubung - Maka akan muncul berapa IP Kamu. Contoh 192.168.1.1.




  3. Cara Menghindari Netcut Tidak ada orang yang senang jika jaringan Wifi tiba-tiba terputus atau lemot.

Selain karena banyaknya pengguna, bisa juga karena Kamu kena Netcut oleh pengguna lain atau pemilik wifi itu sendiri.

Nah untuk menghindari hal tersebut, Ikuti trik dibawah ini :

1. Download aplikasi Terminal Emulator Terminal Emulator.APK
2. Buka aplikasi Terminal Emulator
3. Ketik ping (No IP Kamu)
4. Secara otomatis jika ada pengguna yang ingin Netcut akan gagal karena IP Kamu terdeteksi sibuk
5. Puas-puasin pakek Wifi-nya,


Terima Kasih Telah Membacanya Dengan Seksama(!)
Berbagi itu indah
Semua yang Saya tulis disini dengan tujuan berbagi ilmu dan pengalaman tanpa ada maksud apa pun.

Jika ada pertanyaan jangan sungkan silahkan tanyakan pada kolom komentar yang tersedia di wapmild ilov.eu.org

Senin, Januari 20, 2020

Mininet Wifi - Mininet SDN Network Emulator | Virtualized wifi

Mininet-WiFi is a fork of the Mininet SDN network emulator. The Mininet-WiFi developers extended the functionality of Mininet by adding virtualized WiFi stations and access points based on the standard Linux wireless drivers and the 80211_hwsim wireless simulation driver. They also added classes to support the addition of these wireless devices in a Mininet network scenario and to emulate the attributes of a mobile station such as position and movement relative to the access points.

mn-wifi-graph-200

The Mininet-WiFi extended the base Mininet code by adding or modifying classes and scripts. So, Mininet-WiFi adds new functionality and still supports all the normal SDN emulation capabilities of the standard Mininet network emulator.

In this post, I describe the unique functions available in the Mininet-WiFi network emulator and work through a few tutorials exploring its features.

IMPORTANT NOTE

(Updated October 20, 2017) Since I wrote this post two years ago, the Mininet-WiFi developers have continued to add a lot of functionality to Mininet-WiFi. Some of the information in this post may be outdated and no longer accurate. Please refer to the Mininet-WiFi documentation for up-to-date information about this project. At the top of that page is a link to the Mininet-WiFi manual, which is currently hosted at: https://github.com/ramonfontes/manual-mininet-wifi/raw/master/mininet-wifi-draft-manual.pdf.

Topics covered in this post

In this post, I present the basic functionality of Mininet-WiFi by working through a series of tutorials, each of which works through Mininet-WiFi features, while building on the knowledge presented in the previous tutorial. I suggest new users work through each tutorial in order.

I do not attempt to cover every feature in Mininet-WiFi. Once you work through the tutorials in this post, you will be well equipped to discover all the features in Mininet-WiFi by working through the Mininet-WiFi example scripts, and reading the Mininet-WiFi wiki and mailing list.

I assume the reader is already familiar with the Mininet network emulator so I cover only the new WiFi features added by Mininet-WiFi. If you are not familiar with Mininet, please read my Mininet network simulator review before proceeding. I have also written many other posts about Mininet.

I start by discussing the functionality that Mininet-WiFi adds to Mininet: Mobility functions and WiFi interfaces. Then I show how to install Mininet-WiFi and work through the tutorials listed below:

Tutorial #1: One access point shows how to run the simplest Mininet-WiFi scenario, shows how to capture wireless traffic in a Mininet-Wifi network, and discusses the issues with OpenFlow and wireless LANs.

Tutorial #2: Multiple access points shows how to create a more complex network topology so we can experiment with a very basic mobility scenario. It discusses more about OpenFlow and shows how the Mininet reference controller works in Mininet-WiFi.

Tutorial #3: Python API and scripts shows how to create more complex network topologies using the Mininet-WiFi Python API to define node positions in space and other node attributes. It also discusses how to interact with nodes running in a scenario with the Mininet-WiFi CLI, the Mininet-WiFi Python interpreter, and by running commands in a node’s shell.

Tutorial #4: Mobility shows how to create a network mobility scenario in which stations move through space and may move in and out of range of access points. It also discusses the available functions that may be used to implement different mobility models using the Mininet-WiFi Python API.

Mininet-WiFi compared to Mininet

Mininet-WiFi is an extension of the Mininet software defined network emulator. The Mininet-WiFi developer did not modify any existing Mininet functionality, but added new functionality.

Mininet-WiFi and Mobility

Broadly defined, mobility in the context of data networking refers to the ability of a network to accommodate hosts moving from one part of the network to another. For example: a cell phone user may switch to a wifi access point when she walks into a coffee shop; or a laptop user may walk from her office in one part of a building to a meeting room in another part of the building and still being able to connect to the network via the nearest WiFi access point.

While the standard Mininet network emulator may be used to test mobility1, Mininet-WiFi offers more options to emulate complex scenarios where many hosts will be changing the switches to which they are connected. Mininet-WiFi adds new classes that simplify the programming work required by researchers to create Mobility scenarios.

Mininet-WiFi does not modify the reference SDN controller provided by standard Mininet so the reference controller cannot manage the mobility of users in the wireless network. Researchers must use a remote controller that supports the CAPWAP protocol (NOTE: I’ve not tried this and I do not know if it will work without modifications or additional programming), or manually add and delete flows in the access points and switches.

802.11 Wireless LAN Emulation

Mininet-wifi incorporates the Linux 802.11 SoftMAC wireless drivers, the cfg80211 wireless configuration interface and the mac80211_hwsim wireless simulation drivers in its access points.

The mac80211_hwsim driver is a software simulator for Wi-Fi radios. It can be used to create virtual wi-fi interfaces that use the 802.11 SoftMAC wireless LAN driver. Using this tool, researchers may emulate a Wi-Fi link between virtual machineslab, thesis, hostapd, wpa-supplicant, docs-1, and docs-2" rel="footnote">2. The 80211_hwsim driver enables researchers to emulate the wifi protocol control messages passing between virtual wireless access points and virtual mobile stations in a network emulation scenario. By default, 80211_hwsim simulates perfect conditions, which means there is no packet loss or corruption.

You can use Wireshark to monitor wireless traffic passing between the virtual wireless access point and the virtual mobile stations in the Mininet-wifi network scenarios. But, you will find it is difficult to capture wireless control traffic on standard WLAN interfaces like ap1-wlan0 because The Linux kernel strips wireless control messages and headers before making traffic on these interfaces available to user processes like Wireshark. You will have to install additional tools and follow a complex procedure to enable monitoring of WiFi traffic on the ap1-wlan0 interface. An easier method is available: look for the hwsim0 interface on an access point, enable it, and monitor traffic on it. The hwsim0 interface replays communications sent onto the access point’s simulated wireless interface(s) such as ap1-wlan0 without stripping any 802.11 headers or control traffic3. We’ll see this in the examples we work through, below.

Mininet-WiFi display graph

Since locations of nodes in space is an important aspect of WiFi networks, Mininet WiFi provides a graphical display showing locations of WiFi nodes in a graph. The graph may be created by calling its method in the Mininet-WiFi Python API (see examples in the tutorials below).

The graph will show wireless access points and stations, their positions in space and will display the affects of the range parameter for each node. The graph will not show any “wired” network elements such as standard Mininet hosts or switches, Ethernet connections between access points, hosts, or switches.

Install Mininet-WiFi on a Virtual Machine

First, we need to create a virtual machine that will run the Mininet-WiFi network emulator.

It the example below, we will use the VirtualBox virtual machine manager because it is open-source and runs on Windows, Mac OS, and Linux.

Set up a new Ubuntu Server VM

Install Ubuntu Server in a new VM. Download an Ubuntu Server ISO image from the Ubuntu web site. See my post about installing Debian Linux in a VM. Follow the same steps to install Ubuntu.

In this example, we will name the VM Mininet-WiFi.

Set up the Mininet-WiFi VM

To ensure that the VM can display X applications such as Wireshark on your host computer’s desktop, read through my post about setting up the standard Mininet VM and set up the host-only network adapter, the X windows server, and your SSH software.

Now you can connect to the VM via SSH with X Forwarding enabled. In the example below, my host computer is t420 and the Mininet WiFi VM is named wifi. And, in this case the userid on the Mininet-WiFi VM is brian.

t420:~$ ssh -X brian@192.168.52.101
wifi:~$

Install Mininet-WiFi

In the Mininet-WiFi VM, install a few other tools and then download and compile Mininet-WiFi. The Mininet-WiFi developers created a helpful install script so the process is automatic.

wifi:~$ sudo apt-get update
wifi:~$ sudo apt-get install git make
wifi:~$ git clone https://github.com/intrig-unicamp/mininet-wifi
wifi:~$ cd mininet-wifi

Mininet WiFi is installed by a script. Run the script with the -h help option to see all the options available.

wifi:~$ util/install.sh -h

In my case, I chose to install Mininet-WiFi with the following options:

  • W: install Mininet-WiFi dependencies
  • n: install Mininet dependencies + core files
  • f: install OpenFlow
  • 3: install OpenFlow 1.3
  • v: install Open Vswitch
  • p: install POX OpenFlow Controller
  • w: install Wireshark

So I ran the install script as follows:

wifi:~$ sudo util/install.sh -Wnf3vpw

Mininet-WiFi Tutorial #1: One access point

The simplest network is the default topology, which consists of a wireless access point with two wireless stations. The access point is a switch connected to a controller. The stations are hosts.

This simple lab will allow us to demonstrate how to capture wireless control traffic and will demonstrate the way an OpenFlow-enabled access point handles WiFi traffic on the wlan interface.

Capturing Wireless control traffic in Mininet-WiFi

To view wireless control traffic we must first start Wireshark:

wifi:~$ sudo wireshark &

Then, start Mininet-WiFi with the default network scenario using the command below:

wifi:~$ sudo mn --wifi

Next, enable the hwsim0 interface. The hwsim0 interface is the software interface created by Mininet-WiFi that copies all wireless traffic to all the virtual wireless interfaces in the network scenario. It is the easiest way to monitor the wireless packets in Mininet-WiFi.

mininet-wifi> sh ifconfig hwsim0 up

Now, in Wireshark, refresh the interfaces and then start capturing packets on the hwsim0 interface.

Start capture on hwsim0 interface

Start capture on hwsim0 interface

You should see wireless control traffic. Next, tun a ping command:

mininet-wifi> sta1 ping sta2

In Wireshark, see the wireless frames and the ICMP packets encapsulated in Wireless frames passing through the hwsim0 interface.

Wireshark capturing WiFi control traffic

Wireshark capturing WiFi control traffic

Stop the ping command by pressing Ctrl-C. In this default setup, any flows created in the access point (that’s if they’re created — see below for more on this issue) will expire in 60 seconds.

Wireless Access Points and OpenFlow

In this simple scenario, the access point has only one interface, ap1-wlan0. By default, stations associated with an access point connect in infrastructure mode so wireless traffic between stations must pass through the access point. If the access point works similarly to a switch in standard Mininet, we expect to see OpenFlow messages exchanged between the access point and the controller whenever the access point sees traffic for which it does not already have flows established.

To view OpenFlow packets, stop the Wireshark capture and switch to the loopback interface. Start capturing again on the loopback interface. Use the OpenFlow_1.0 filter to view only OpenFlow messages.

Then, start some traffic running with the ping command and look at the OpenFlow messages captured in Wireshark.

mininet-wifi> sta1 ping sta2    

I was expecting that the first ICMP packet generated by the ping command should be flooded to the controller, and the controller would set up a flows on the access point so the two stations could exchange packets. Instead, I found that the two stations were able to exchange packets immediately and the access point did not flood the ICMP packets to the controller. Only an ARP packet, which is in a broadcast frame, gets flooded to the controller and is ignored.

No OpenFlow messages passing to the controller

No OpenFlow messages passing to the controller

Check to see if flows have been created in the access point:

mininet-wifi> dpctl dump-flows
*** ap1 ------------------------------------------
NXST_FLOW reply (xid=0x4):

We see that no flows have been created on the access point. How do the two access points communicate with each other?

I do not know the answer but I have an idea. My research indicates that OpenFlow-enabled switches (using OpenFlow 1.0 or 1.3) will reject “hairpin connections”, which are flows that cause traffic to be sent out the same port in which it was received. A wireless access point, by design, receives and sends packets on the same wireless interface. Stations connected to the same wireless access point would require a “hairpin connection” on the access point to communicate with each other. I surmise that, to handle this issue, Linux treats the WLAN interface in each access point like the radio network sta1-ap1-sta2 as if it is a “hub”, where ap1-wlan0 provides the “hub” functionality for data passing between sta1 and sta2. ap1-wlan0 switches packets in the wireless domain and will not bring a packet into the “Ethernet switch” part of access point ap1 unless it must be switched to another interface on ap1 other than back out ap1-wlan0.

Stop the tutorial

Stop the Mininet ping command by pressing Ctrl-C.

In the Wireshark window, stop capturing and quit Wireshark.

Stop Mininet-Wifi and clean up the system with the following commands:

mininet-wifi> exit
wifi:~$ sudo mn -c

Mininet-WiFi Tutorial #2: Multiple access points

When we create a network scenario with two or more wireless access points, we can show more of the functions available in Mininet-WiFi.

In this tutorial, we will create a linear topology with three access points, where one station is connected to each access point. Remember, you need to already know basic Mininet commands to appreciate how we create topologies using the Mininet command line.

Run Mininet-Wifi and create a linear topology with three access points:

wifi:~$ sudo mn --wifi --topo linear,3

From the output of the command, we can see how the network is set up and which stations are associated with which access points.

*** Creating network
*** Adding controller
*** Adding hosts and stations:
sta1 sta2 sta3
*** Adding switches and access point(s):
ap1 ap2 ap3
*** Adding links and associating station(s):
(ap2, ap1) (ap3, ap2) (sta1, ap1) (sta2, ap2) (sta3, ap3)
*** Starting controller(s)
c0
*** Starting switches and access points
ap1 ap2 ap3 ...
*** Starting CLI:
mininet-wifi>

We can also verify the configuration using the Mininet CLI commands net and dump.

For example, we can run the net command to see the connections between nodes:

mininet-wifi> net
sta1 sta1-wlan0:None
sta2 sta2-wlan0:None
sta3 sta3-wlan0:None
ap1 lo:  ap1-eth1:ap2-eth1
ap2 lo:  ap2-eth1:ap1-eth1 ap2-eth2:ap3-eth1
ap3 lo:  ap3-eth1:ap2-eth2
c0

From the net command above, we see that ap1, ap2, and ap3 are connected together in a linear fashion by Ethernet links. But, we do not see any information about to which access point each station is connect. This is because they are connected over a “radio” interface so we need to run the iw command at each station to observe to which access point each is associated.

To check which access points are “visible” to each station, use the iw scan command:

mininet-wifi> sta1 iw dev sta1-wlan0 scan | grep ssid
        SSID: ssid_ap1
        SSID: ssid_ap2
        SSID: ssid_ap3

Verify the access point to which each station is currently connected with the iw link command. For example, to see the access point to which station sta1 is connected, use the following command:

mininet-wifi> sta1 iw dev sta1-wlan0 link
Connected to 02:00:00:00:03:00 (on sta1-wlan0)
        SSID: ssid_ap1
        freq: 2412
        RX: 1853238 bytes (33672 packets)
        TX: 7871 bytes (174 packets)
        signal: -30 dBm
        tx bitrate: 54.0 MBit/s

        bss flags:      short-slot-time
        dtim period:    2
        beacon int:     100
mininet-wifi>

A simple mobility scenario

In this example, each station is connected to a different wireless access point. We can use the iw command to change which access point to which each station is connected.

Note: The iw commands may be used in static scenarios like this but should not be used when Mininet-WiFi automatically assigns associations in more realistic mobility scenarios. WeĆ¢€™ll discuss how Mininet-WiFi handles real mobility and how to use iw commands with Mininet-WiFi later in this post.

Let’s decide we want sta1, which is currently associated with ap1, to change its association to ap2. Manually switch the sta1 association from ap1 (which is ssid_ap1) to ap2 (which is ssid_ap2) using the following commands:

mininet-wifi> sta1 iw dev sta1-wlan0 disconnect
mininet-wifi> sta1 iw dev sta1-wlan0 connect ssid_ap2

Verify the change with the iw link command:

mininet-wifi> sta1 iw dev sta1-wlan0 link
Connected to 02:00:00:00:04:00 (on sta1-wlan0)
        SSID: ssid_ap2
        freq: 2412
        RX: 112 bytes (4 packets)
        TX: 103 bytes (2 packets)
        signal: -30 dBm
        tx bitrate: 1.0 MBit/s

        bss flags:      short-slot-time
        dtim period:    2
        beacon int:     100
mininet-wifi>

We see that sta1 is now associated with ap2.

So we’ve demonstrated a basic way to make stations mobile, where they switch their association from one access point to another.

OpenFlow flows in a mobility scenario

Now let’s see how the Mininet reference controller handles this simple mobility scenario.

We need to get some traffic running from sta1 to sta3 in a way that allows us to access the Mininet-WiFi command line. We’ll run the ping command in an xterm window on sta3.

First, check the IP addresses on sta1 and sta3 so we know which parameters to use in our test. The easiest way to see all IP addresses is to run the dump command:

mininet-wifi> dump







mininet-wifi>    

So we see that sta1 has IP address 10.0.0.1 and sta3 has IP address 10.0.0.3.

Next, start an xterm window on sta3:

mininet-wifi> xterm sta3

This opens an xterm window from sta3.

xterm window on sta3

xterm window on sta3

In that window, run the following command to send ICMP messages from sta3 to sta1:

root@mininet-wifi:~# ping 10.0.0.1

Since these packets will be forwarded by the associated access points out a port other then the port on which the packets were received, the access points will operate like normal OpenFlow-enabled switches. Each access point will forward the first ping packet it receives in each direction to the Mininet reference controller. The controller will set up flows on the access points to establish a connection between the stations sta1 and sta3.

If we run Wireshark and enable packet capture on the Loopback interface, then filter using with of (for Ubuntu 14.04) or openflow_v1 (for Ubuntu 15.10 and later), we will see OpenFlow messages passing to and from the controller.

Wireshark capturing OpenFlow messages

Wireshark capturing OpenFlow messages

Now, in the Mininet CLI, check the flows on each switch with the dpctl dump-flows command.

mininet-wifi> dpctl dump-flows
*** ap1 -----------------------------------------------
NXST_FLOW reply (xid=0x4):
*** ap2 -----------------------------------------------
NXST_FLOW reply (xid=0x4):
idle_timeout=60, idle_age=0, priority=65535,arp,in_port=2,vlan_tci=0x0000,dl_src=02:00:00:00:02:00,dl_dst=02:00:00:00:00:00,arp_spa=10.0.0.3,arp_tpa=10.0.0.1,arp_op=2 actions=output:3
 cookie=0x0, duration=1068.17s, table=0, n_packets=35, n_bytes=1470, idle_timeout=60, idle_age=0, priority=65535,arp,in_port=3,vlan_tci=0x0000,dl_src=02:00:00:00:00:00,dl_dst=02:00:00:00:02:00,arp_spa=10.0.0.1,arp_tpa=10.0.0.3,arp_op=1 actions=output:2
 cookie=0x0, duration=1073.174s, table=0, n_packets=1073, n_bytes=105154, idle_timeout=60, idle_age=0, priority=65535,icmp,in_port=3,vlan_tci=0x0000,dl_src=02:00:00:00:00:00,dl_dst=02:00:00:00:02:00,nw_src=10.0.0.1,nw_dst=10.0.0.3,nw_tos=0,icmp_type=0,icmp_code=0 actions=output:2
 cookie=0x0, duration=1073.175s, table=0, n_packets=1073, n_bytes=105154, idle_timeout=60, idle_age=0, priority=65535,icmp,in_port=2,vlan_tci=0x0000,dl_src=02:00:00:00:02:00,dl_dst=02:00:00:00:00:00,nw_src=10.0.0.3,nw_dst=10.0.0.1,nw_tos=0,icmp_type=8,icmp_code=0 actions=output:3
*** ap3 -----------------------------------------------
NXST_FLOW reply (xid=0x4):
 cookie=0x0, duration=1068.176s, table=0, n_packets=35, n_bytes=1470, idle_timeout=60, idle_age=0, priority=65535,arp,in_port=2,vlan_tci=0x0000,dl_src=02:00:00:00:02:00,dl_dst=02:00:00:00:00:00,arp_spa=10.0.0.3,arp_tpa=10.0.0.1,arp_op=2 actions=output:1
idle_timeout=60, idle_age=0, priority=65535,arp,in_port=1,vlan_tci=0x0000,dl_src=02:00:00:00:00:00,dl_dst=02:00:00:00:02:00,arp_spa=10.0.0.1,arp_tpa=10.0.0.3,arp_op=1 actions=output:2
 cookie=0x0, duration=1073.182s, table=0, n_packets=1073, n_bytes=105154, idle_timeout=60, idle_age=0, priority=65535,icmp,in_port=1,vlan_tci=0x0000,dl_src=02:00:00:00:00:00,dl_dst=02:00:00:00:02:00,nw_src=10.0.0.1,nw_dst=10.0.0.3,nw_tos=0,icmp_type=0,icmp_code=0 actions=output:2
 cookie=0x0, duration=1073.185s, table=0, n_packets=1073, n_bytes=105154, idle_timeout=60, idle_age=0, priority=65535,icmp,in_port=2,vlan_tci=0x0000,dl_src=02:00:00:00:02:00,dl_dst=02:00:00:00:00:00,nw_src=10.0.0.3,nw_dst=10.0.0.1,nw_tos=0,icmp_type=8,icmp_code=0 actions=output:1
mininet-wifi>

We see flows set up on ap2 and ap3, but not on ap1. This is because sta1 is connected to ap2 and sta3 is connected to ap3 so all traffic is passing through only ap2 and ap3.

What will happen if sta1 moves back to ap1? Move sta1 back to access point ap1 with the following commands:

mininet-wifi> sta1 iw dev sta1-wlan0 disconnect
mininet-wifi> sta1 iw dev sta1-wlan0 connect ssid_ap1

The ping command running on sta3 stops working. We see no more pings completed.

In this case, access points ap2 and ap3 already have flows for ICMP messages coming from sta3 so they just keep sending packets towards the ap2-wlan0 interface to reach where they think sta1 is connected. Since ping messages never get to sta1 in its new location, the access point ap1 never sees any ICMP traffic so does not request any flow updates from the controller.

Check the flow tables in the access points again:

mininet-wifi> dpctl dump-flows
*** ap1 -----------------------------------------------
NXST_FLOW reply (xid=0x4):
 cookie=0x0, duration=40.959s, table=0, n_packets=1, n_bytes=42, idle_timeout=60, idle_age=40, priority=65535,arp,in_port=1,vlan_tci=0x0000,dl_src=02:00:00:00:02:00,dl_dst=02:00:00:00:00:00,arp_spa=10.0.0.3,arp_tpa=10.0.0.1,arp_op=1 actions=output:2
 cookie=0x0, duration=40.958s, table=0, n_packets=1, n_bytes=42, idle_timeout=60, idle_age=40, priority=65535,arp,in_port=2,vlan_tci=0x0000,dl_src=02:00:00:00:00:00,dl_dst=02:00:00:00:02:00,arp_spa=10.0.0.1,arp_tpa=10.0.0.3,arp_op=2 actions=output:1
*** ap2 -----------------------------------------------
NXST_FLOW reply (xid=0x4):
 cookie=0x0, duration=40.968s, table=0, n_packets=1, n_bytes=42, idle_timeout=60, idle_age=40, priority=65535,arp,in_port=2,vlan_tci=0x0000,dl_src=02:00:00:00:02:00,dl_dst=02:00:00:00:00:00,arp_spa=10.0.0.3,arp_tpa=10.0.0.1,arp_op=1 actions=output:1
 cookie=0x0, duration=40.964s, table=0, n_packets=1, n_bytes=42, idle_timeout=60, idle_age=40, priority=65535,arp,in_port=1,vlan_tci=0x0000,dl_src=02:00:00:00:00:00,dl_dst=02:00:00:00:02:00,arp_spa=10.0.0.1,arp_tpa=10.0.0.3,arp_op=2 actions=output:2
 cookie=0x0, duration=1214.279s, table=0, n_packets=1214, n_bytes=118972, idle_timeout=60, idle_age=0, priority=65535,icmp,in_port=2,vlan_tci=0x0000,dl_src=02:00:00:00:02:00,dl_dst=02:00:00:00:00:00,nw_src=10.0.0.3,nw_dst=10.0.0.1,nw_tos=0,icmp_type=8,icmp_code=0 actions=output:3
*** ap3 -----------------------------------------------
NXST_FLOW reply (xid=0x4):
 cookie=0x0, duration=40.978s, table=0, n_packets=1, n_bytes=42, idle_timeout=60, idle_age=40, priority=65535,arp,in_port=2,vlan_tci=0x0000,dl_src=02:00:00:00:02:00,dl_dst=02:00:00:00:00:00,arp_spa=10.0.0.3,arp_tpa=10.0.0.1,arp_op=1 actions=output:1
 cookie=0x0, duration=40.971s, table=0, n_packets=1, n_bytes=42, idle_timeout=60, idle_age=40, priority=65535,arp,in_port=1,vlan_tci=0x0000,dl_src=02:00:00:00:00:00,dl_dst=02:00:00:00:02:00,arp_spa=10.0.0.1,arp_tpa=10.0.0.3,arp_op=2 actions=output:2
 cookie=0x0, duration=1214.288s, table=0, n_packets=1214, n_bytes=118972, idle_timeout=60, idle_age=0, priority=65535,icmp,in_port=2,vlan_tci=0x0000,dl_src=02:00:00:00:02:00,dl_dst=02:00:00:00:00:00,nw_src=10.0.0.3,nw_dst=10.0.0.1,nw_tos=0,icmp_type=8,icmp_code=0 actions=output:1
mininet-wifi>

The controller sees some LLC messages from sta1 but does recognize that sta1 has moved to a new access point, so it does nothing. Since the controller does not modify any flows in the access points, none of the ICMP packets still being generated by sta3 will reach sta1 so it cannot reply. This situation will remain as long as the access points ap2 and ap3 continue to see ICMP packets from sta3, which keeps the old flow information alive in their flow tables.

One “brute force” way to resolve this situation is to delete the flows on the switches. In this simple example, it’s easier to just delete all flows.

Delete the flows in the access points using the command below:

mininet-wifi> dpctl del-flows

Now the ping command running in the xterm window on sta3 should show that pings are being completed again.

Once all flows were deleted, ICMP messages received by the access points do not match any existing flows so the access points communicate with the controller to set up new flows. If we dump the flows we see that the ICMP packets passing between sta3 and sta1 are now traversing across all three acces points.

mininet-wifi> dpctl dump-flows
*** ap1 -----------------------------------------------
NXST_FLOW reply (xid=0x4):
 cookie=0x0, duration=10.41s, table=0, n_packets=11, n_bytes=1078, idle_timeout=60, idle_age=0, priority=65535,icmp,in_port=2,vlan_tci=0x0000,dl_src=02:00:00:00:00:00,dl_dst=02:00:00:00:02:00,nw_src=10.0.0.1,nw_dst=10.0.0.3,nw_tos=0,icmp_type=0,icmp_code=0 actions=output:1
 cookie=0x0, duration=9.41s, table=0, n_packets=10, n_bytes=980, idle_timeout=60, idle_age=0, priority=65535,icmp,in_port=1,vlan_tci=0x0000,dl_src=02:00:00:00:02:00,dl_dst=02:00:00:00:00:00,nw_src=10.0.0.3,nw_dst=10.0.0.1,nw_tos=0,icmp_type=8,icmp_code=0 actions=output:2
*** ap2 -----------------------------------------------
NXST_FLOW reply (xid=0x4):
 cookie=0x0, duration=10.414s, table=0, n_packets=11, n_bytes=1078, idle_timeout=60, idle_age=0, priority=65535,icmp,in_port=1,vlan_tci=0x0000,dl_src=02:00:00:00:00:00,dl_dst=02:00:00:00:02:00,nw_src=10.0.0.1,nw_dst=10.0.0.3,nw_tos=0,icmp_type=0,icmp_code=0 actions=output:2
 cookie=0x0, duration=9.417s, table=0, n_packets=10, n_bytes=980, idle_timeout=60, idle_age=0, priority=65535,icmp,in_port=2,vlan_tci=0x0000,dl_src=02:00:00:00:02:00,dl_dst=02:00:00:00:00:00,nw_src=10.0.0.3,nw_dst=10.0.0.1,nw_tos=0,icmp_type=8,icmp_code=0 actions=output:1
*** ap3 -----------------------------------------------
NXST_FLOW reply (xid=0x4):
 cookie=0x0, duration=10.421s, table=0, n_packets=11, n_bytes=1078, idle_timeout=60, idle_age=0, priority=65535,icmp,in_port=1,vlan_tci=0x0000,dl_src=02:00:00:00:00:00,dl_dst=02:00:00:00:02:00,nw_src=10.0.0.1,nw_dst=10.0.0.3,nw_tos=0,icmp_type=0,icmp_code=0 actions=output:2
 cookie=0x0, duration=9.427s, table=0, n_packets=10, n_bytes=980, idle_timeout=60, idle_age=0, priority=65535,icmp,in_port=2,vlan_tci=0x0000,dl_src=02:00:00:00:02:00,dl_dst=02:00:00:00:00:00,nw_src=10.0.0.3,nw_dst=10.0.0.1,nw_tos=0,icmp_type=8,icmp_code=0 actions=output:1
mininet-wifi>

We have shown how the Mininet reference controller works in Mininet-WiFi. The Mininet reference controller does not have the ability to detect when a station moves from one access point to another. When this happens, we must delete the existing flows so that new flows can be created. We will need to us a more advanced remote controller, such as OpenDaylight, to enable station mobility but that is a topic outside the scope of this post.

Stop the tutorial

Stop the Mininet ping command by pressing Ctrl-C.

In the Wireshark window, stop capturing and quit Wireshark.

Stop Mininet-Wifi and clean up the system with the following commands:

mininet-wifi> exit
wifi:~$ sudo mn -c

Mininet-WiFi Tutorial #3: Python API and scripts

Mininet provides a Python API so users can create simple Python scripts that will set up custom topologies. Mininet-WiFi extends this API to support a wireless environment.

When you use the normal Mininet mn command with the –wifi option to create Mininet-WiFi topologies, you do not have access to most of the extended functionality provided in Mininet-WiFi. To access features that allow you to emulate the behavior of nodes in a wireless LAN, you need to use the Mininet-Wifi extensions to the Mininet Python API.

The Mininet-WiFi Python API

The Mininet-WiFi developers added new classes to Mininet to support emulation of nodes in a wireless environment. Mininet-WiFi adds addStation and addBaseStation methods, and a modified addLink method to define the wireless environment.

If you are just beginning to write scripts for Mininet-WiFi, you can use the example scripts as a starting point. The Mininet-WiFi developers created example scripts that show how to use most of the features in Mininet-WiFi. In all of the tutorials I show below, I started with an example script and modified it.

Mininet-Wifi example scripts are in the ~/mininet-wifi/examples directory.

Basic station and access point methods

In a simple scenario, you may add a station and an access point with the following methods in a Mininet-WiFi Python script:

Add a new station named sta1, with all parameters set to default values:

net.addStation( 'sta1' )

Add a new access point named ap1, with SSID ap1-ssid, and all other parameters set to default values:

net.addBaseStation( 'ap1',  ssid='new_ssid' )

Add a wireless association between station and access point, with default values for link attributes:

net.addLink( ap1, sta1 )

For more complex scenarios, more parameters are available for each method. You may specify the MAC address, IP address, location in three dimensional space, radio range, and more. For example, the following code defines an access point and a station, and creates an association (a wireless connection) between the two nodes and applies some traffic control parameters to the connection to make it more like a realistic radio environment, adding badwidth restrictions, an error rate, and a propagation delay:

Add a station and specify the wireless encryption method, the station MAC address, IP address, and position in virtual space:

net.addStation( 'sta1', passwd='123456789a', encrypt='wpa2', mac='00:00:00:00:00:02', ip='10.0.0.2/8', position='50,30,0' ) 

Add an access point and specify the wireless encryption method, SSID, wireless mode, channel, position, and radio range:

net.addBaseStation( 'ap1', passwd='123456789a', encrypt='wpa2', ssid= 'ap1-ssid', mode= 'g', channel= '1', position='30,30,0', range=30 )

Add a wireless association between a station and an access point and specifiy link properties of maximum bandwidth, error rate, and delay:

net.addLink( ap1, sta1, bw='11Mbps', loss='0.1%', delay='15ms' )

To activate association control in a static network, you may use the associationControl method, which makes Mininet-WiFi automatically choose which access point a base station will connect to based on the range between stations and access points. For example, use the following method to use the strongest signal first when determining connections between station and access points:

net.associationControl( 'ssf' )
Classic Mininet API

The Mininet WiFi Python API still supports the standard Mininet node types — switches, hosts, and controllers. For example:

Add a host. Note that the station discussed above is a type of host nodem with a wireless interface instead of an Ehternet interface.

net.addHost( 'h1' )

Add a switch. Note that the access point discussed above is a type of switch that has one wireless interface (wlan0) and any number of Ethernet interfaces (up to the maximum supported by your installed version of Open vSwitch).

net.addSwitch( 's1' )

Add an Ethernet link between two nodes. Note that if you use addLink to connect two access points together (and are using the default Infrastructure mode), Mininet-WiFi creates an Ethernet link between them.

net.addLink( s1, h1 )

Add a controller:

net.addController( 'c0' )

Using the Python API, you may build a topology that includes hosts, switches, stations, access points, and multiple controllers.

Mininet-WiFi network with node positions

In the example below, I created a Python program that will set up two stations connected to two access points, and set node positions and radio range so that we can see how these properties affect the emulated network. I used the Mininet-WiFi example script 2AccessPoints.py as the base for the script shown below, then I added the position information to each node and enabled association control.

#!/usr/bin/python

from mininet.net import Mininet
from mininet.node import Controller,OVSKernelSwitch
from mininet.link import TCLink
from mininet.cli import CLI
from mininet.log import setLogLevel

def topology():

    net = Mininet( controller=Controller, link=TCLink, switch=OVSKernelSwitch )

    print "*** Creating nodes"
    ap1 = net.addBaseStation( 'ap1', ssid= 'ssid-ap1', mode= 'g', channel= '1', position='10,30,0', range='20' )
    ap2 = net.addBaseStation( 'ap2', ssid= 'ssid-ap2', mode= 'g', channel= '6', position='50,30,0', range='20' )
    sta1 = net.addStation( 'sta1', mac='00:00:00:00:00:01', ip='10.0.0.1/8', position='10,20,0' )
    sta2 = net.addStation( 'sta2', mac='00:00:00:00:00:02', ip='10.0.0.2/8', position='50,20,0' )
    c1 = net.addController( 'c1', controller=Controller )

    """plot graph"""
    net.plotGraph(max_x=60, max_y=60)

    # Comment out the following two lines to disable AP
    print "*** Enabling association control (AP)"
    net.associationControl( 'ssf' )        

    print "*** Creating links and associations"
    net.addLink( ap1, ap2 )
    net.addLink( ap1, sta1 )
    net.addLink( ap2, sta2 )

    print "*** Starting network"
    net.build()
    c1.start()
    ap1.start( [c1] )
    ap2.start( [c1] )

    print "*** Running CLI"
    CLI( net )

    print "*** Stopping network"
    net.stop()

if __name__ == '__main__':
    setLogLevel( 'info' )
    topology()

I saved the file with the name position-test.py and made it executable.

Working with Mininet-WiFi during runtime

Mininet-WiFi python scripts may be run from the command line by running the script directly, or by calling it as part of a Python command. The only difference is how the path is stated. For example:

wifi:~/scripts $ sudo ./position-test.py

or,

wifi:~$ sudo python position-test.py

The position-test.py script will set open the Mininet-WiFi graph window and show the locations of each wireless node in space, and the range attribute of each node.

The position-test.py script running

The position-test.py script running

While the scenario is running, we can query information about the network from either the Mininet-WiFi command line or from the Python interpreter and we can log into running nodes to gather information or make configuration changes.

Mininet-WiFi CLI

The Python script position-test.py places nodes in specific positions. When the scenario is running, we can use the Mininet-WiFi command line interface (CLI) commands to can check the geometric relationship between nodes in space, and information about each node.

Position

The position CLI command outputs the location of a node in virtual space as measured by three values, one for each of the vertices X, Y, and Z.

Senin, November 11, 2019

WIFI HACK | The software can break any password


The
world we live now is a comprehensive package
of technology and its successor, the Internet.
Origin of the internet has brought the
whole world under one’s eye. The internet is
everything now, and one needs to pay for it,
though. Worthy things never come for free at
times. But the internet can be made accessible
for free sometimes. One way of using
the free internet is using the unencrypted
Wifi network obtainable in the nearby location
such as in cafe, railway station and other public
places. Know here how to Hack Wifi Password Online.

The other technique is by using the secured
and encrypted Wifi internet access. The name
encryption denotes the protection given to the
Wifi network regarding username and a
password. No issues when both the username
and password is identified. What if you don’t
have any of the things? No concerns. Hack the
Wifi network with password hacking software.

WiFi Password Hacker Online Software
2018:

 

WiFi
Password Hacker Online

Of course, this article would deal
eventually about the hacking. One could totally
enjoy the internet without paying a single buck
with Wifi password hacking software for PCs. It
is assured you have the internet connection in
the form of encrypted Wifi and not able to
utilize the Internet over that
network. The problem sensed in using
the encrypted Wifi network is the password.
Only the genuine user knows the password of
that particular system such that providing
security from unauthorized user access to that
network. Technology always offers a solution
for any problem and for here with hacking.

Definition of Hacking

Hacking is the key to use the internet for
free from the secured network. i.e., an
unauthorized process that abolishes the security
of any wireless local area network, Wifi. The
person involved in the hacking movement is
called as a hacker. Any Wifi network can be
easily hacked with two points that include weak
encryption and configuration.

If the configuration of that specific network
is weak, then that network can be easily hacked.
Poor configuration transpires as a result of the
network admin’s irresponsibility in not providing
a stronger password without the security
settings and the use of default configuration.
Encryption issues comprise the security keys
used to protect the network such
as WEP and WPA.

WiFi Password Hacker Online – Wireless
Network Encryption:

 

Any hacking process desires to cross the
boundary of network encryption to use the
internet for free. Encryption is nothing but the
password given to the system to defend the
illegal internet usage. The password must be
hacked or cracked (i.e. password must be found
out) which is the first necessity of the hacking.
However, numerous frames have to be crossed
before finding the password. Encryption falls
under three classifications WEP, WPA and
WPA2.

Any system can be protected with any of
the authentications or encryption approaches.
They differ concerning how strong the
encryption wall is.

1. Wired Equivalent Privacy (WEP)

WEP is the encryption standard accessible
for the wireless network protection initially.
Intended for IEEE 802.11 WLAN. Any network
with WEP security can be hacked effortlessly
within few minutes with the correct
configuration. It is the weakest form of
authentication or encryption delivered for a
wireless network. WEP works by encrypting the
data conveyed over the network.

2. Wi-Fi Protected Access (WPA)

Due to the great errors and vulnerabilities
in WEP made the system user opt for WPA. In
this technique, security is high. But if the
password falls diminutive, then hacking is
easy. WPA uses pre-shared sources. Several
tools are available for hacking.

3. Wi-Fi Protected Access2 (WPA2)

WPA2 got established due to the
vulnerabilities in WPA and to improve the
security further. It is the most used encryption
technique for any wireless network since
indulging in hacking such system is a complex
task. WPA2 with Advanced Encryption
Standards (AES) makes the security tougher. It
customs a pre-shared key or a passphrase. The
network with WPA2 security receipts much time
to be hacked. Hacking can be done at the time
of packets produced from the Wifi access
point.

WiFi Password Hacker Online Hacking
Procedures

Hacking is neither a one step procedure nor
it is simple. Any hacker necessitates an
extended knowledge in hacking
methods. There are many approaches
and ways available for hacking a secured Wifi
network. Even software’s are accessible to hack
the security of the system. The list of most
usually used hacking methods to hack or crack
any authenticated wireless network is given.

Dictionary Attack: In this method, thousands of
words with likely potentials from the dictionary
will be matched to decrypt the password.
Security can be hacked within little seconds if
the passphrase is only alphabets.
    Since it is the user prefers
simple passphrase to remember.

Brute Force Attack: It is comparable to the
Dictionary attack added the advantage of
searching for the password from outside the
dictionary. I.e. alphanumeric options. Brute
force technique takes little more time to hack
the password.

Rainbow Table Attack: In this method, pre-computed
hash tables will be selected to check for the
passphrase. Passwords get deposited in a
database in any system. Another database will
be produced, and the password will be found
out by this method. It drafts for the commonly
used passwords in both the database. When a
match is found, then it is the password of that
particular secured network.

Phishing: Communication through the
electronic medium to get the password is
Phishing. I.e. a mail or message send to the
user such that requesting for their personal
details to fill in for a fake website. Those
websites have relations to sites with malware. It
is still the most prevalent way to steal the
password.

Social Engineering: It uses one individual acting for a
telephone call from in the name of an
unidentified person or company asking for your
details. It is not only used in hacking but also for
numerous purposes.

Malware:  Malware installs a key
logger or screen scraper that accounts all the
things you type or take screen shots and
forwards a copy to the hacker.

Spidering: The
passwords of most organizations would
transmit to their company information that
would be available on the company websites.
Information taken from there will do dictionary
and brute force attack.

Guess: Sometimes the user would not
have altered the default password provided by
the network or use some simple passwords.
With a guess, security can be hacked.

WiFi Password Hacker Online Software-An
Innovation

 

There are several methods available for
hacking a secured Wifi network and some
commonly used methods are stated above. All
these need a deep knowledge. However, there is
a substitute method available called the
password hacking software tools. The password
hacking software is developed solely for
hacking. It is the easiest mode to hack the
system’s password. The software can break any
password quickly without any hassle such that
permitting you to enter into any authenticated
wireless network. The proficiency of the
software lies in its access towards the password
breaking. The password hacking software works
for any kind of encryption provided for the
network such as WEP, WPA or WPA2. The
software is free to use after downloaded. So
now anyone can use unlimited internet with
hacking software with not wasting much of the
time in using the hacking methods.

Key Features of WiFi Password Hacker
Online Software for PC

  • The Wifi password hacker
    software
    is a free apparatus to
    decrypt any secure Wifi network.
  • The password hacker software is a virus free
    type.
  • The password hacker software works on all
    types of operating systems.
  • Decreases the time to crack any passphrase
    of the available network that requires
    authentication.
  • User-friendly design and interface
    permitting the user to hack any system without
    any hassle.
  • Any quantity of secured Wifi networks could
    be hacked with this software.
  • The software does not show your identity to
    the owner of the network you hacked.
  • The software does not need its user
    to have knowledge about ethical hacking.